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Abstract

The functional performance of materials—such as those used in energy storage, filtration
and biomedical applications—depends on their micro- and nanostructures. Establishing
quantitative relationships between material processing parameters, structure and macro-
scopic properties remains a central challenge across materials science and related fields
such as computational modeling, process engineering and materials informatics. Address-
ing this challenge typically requires three-dimensional information on the microstructure.
However, the acquisition of 3D image data is often expensive, destructive and/or lim-
ited in resolution, motivating the development of computational approaches that infer 3D
morphologies from more accessible 2D image data [1].
Recent advances in data-driven stereology have demonstrated that realistic 3D microstruc-
tures can be stochastically reconstructed from planar sections or 2D projections using
generative methods from artificial intelligence (AI), particularly generative adversarial
networks (GANs) [2,3]. Under certain mild assumptions such as isotropy, these compu-
tational models can learn the distribution of complex 3D morphologies directly from 2D
image data and offer broad adaptability to different types of material microstructures and
imaging modalities. However, these approaches are often not readily interpretable. More
precisely, often AI-based methods involve a large number of learnable model parameters
(weights), which makes them highly flexible but difficult to analyze or constrain physi-
cally. Their generality typically comes at the cost of requiring large and diverse training
datasets to generate physically realistic and structurally accurate 3D morphologies. With-
out sufficiently comprehensive datasets, the generated morphologies may fail to exhibit
physical plausibility, even if they appear statistically consistent with 2D training images.
In response to the challenges of interpretability and data efficiency in AI-based stereo-
logical methods, data-driven approaches can be combined with interpretable, parametric
stochastic geometry models, such as random tessellations [4]. These models offer a mathe-
matically grounded and interpretable framework for generating synthetic microstructures
that adhere to physically meaningful morphological constraints.
This talk will present a computational framework that combines interpretable stochas-
tic 3D models of stochastic geometry with generative AI techniques in order to facili-
tate model calibration by means of 2D image data. The methodology combines GAN-
based training with models such as random tessellations (for modeling polycrystalline
microstructures) [5], random fields on the unit sphere (for modeling particle surfaces) [6],
and excursion sets of random fields (for modeling porous or multiphase materials) [7].
This combined approach enables the statistical reconstruction of physically plausible 3D
microstructures from 2D imaging data. In this manner, measurement efforts can be signif-
icantly reduced in various scientific fields such as materials science, where high-resolution
3D imaging is often costly or experimentally constrained.
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